Содержание материала

23.3. ЕМКОСТНЫЕ ДЕЛИТЕЛИ НАПРЯЖЕНИЯ

Помимо электромагнитных ТН для понижения высокого напряжения могут быть использованы емкостные делители. Принципиальная схема подобного устройства, понижающего напряжение сети 500 кВ, приведена на рис. 23.9. Делитель Д состоит из конденсаторной батареи С1 и конденсатора С2.
В чисто емкостной цепочке (цепь ТН АХХ разомкнута) напряжение U$ делится обратно пропорционально значениям емкостей. Емкость С2 на порядок больше С1, и ток цепочки определяется конденсатором С1. Емкость С2 выбирается так, чтобы напряжение на ней Uc2 находилось в пределах 4—12 кВ. Для дальнейшего понижения напряжение через реактор Р подается на ТН нормального исполнения и низкой стоимости. Нагрузка, имеющая номинальное напряжение 1-00 В, включается на вторичную обмотку этого трансформатора напряжения.
Если в схеме отсутствует реактор Р, то с ростом нагрузки уменьшается входное сопротивление трансформатора напряжения и выходное напряжение начинает падать. Если реактор настроен в резонанс с емкостью С1+С2 при частоте сети / = 50 Гц, то выходное напряжение мало зависит от нагрузки.

 

Емкостный делитель
Рис. 23.9. Емкостный делитель

Для выявления основных свойств делителя примем, что ТН идеальный и погрешности не вносит. Если пренебречь током холостого хода трансформатора напряжения, то схема рис. 23.9 может быть преобразована в схему рис. 23.10. Трансформатор и нагрузку можно заменить сопротивлением нагрузки Z'v приведенным к первичной обмотке трансформатора напряжения.

Упрощенная расчетная схема емкостного делителя

Рис. 23.10. Упрощенная расчетная схема емкостного делителя

 

При КЗ на вторичной стороне появятся перенапряжения на конденсаторе С2, которые могут привести к его пробою. Для ограничения этих перенапряжений параллельно конденсатору С2 ставится разрядник или используется аппарат защиты от КЗ в цепи нагрузки.
При использовании в качестве конденсатора С1 конденсаторной бумагомасляной изоляции проходных изоляторов мощность полезной нагрузки ограничивается из-за малости емкости С1. Так, при номинальном напряжении Uном=10 кВ мощность нагрузки составляет 15 В-А.
Погрешность по напряжению достигает 5 %, а угловая погрешность доходит до 5°. В настоящее время в релейной защите высоковольтных линий широко используются сигналы высокой частоты. Релейная защита, работающая на высокой частоте (блок ВЧ, рис. 23.9), связана с линией высокого напряжения через конденсатор С1. Сигналы высокой частоты подаются в линию высокого напряжения и воспринимаются устройством, расположенным в другой точке линии. Для таких защит разработаны специальные конденсаторы большой емкости. Эти конденсаторы используются в емкостном делителе и дают возможность увеличить мощность нагрузки до 1000 В-А. Для того чтобы не пропускать токи высокой частоты, в цепь ТН устанавливается высокочастотный заградитель 3, играющий роль фильтра. Емкостный делитель может быть использован также для отбора больших мощностей (многих киловольт-ампер) вместо понижающих силовых трансформаторов.
В СССР выпускаются емкостные делители мощностью до 300 В-А первого класса точности. Исследования показали возможность создания делителей класса точности 0,2.
В конструкции реакторов и ТН предусмотрена возможность регулирования параметров для компенсации технологических разбросов по емкости конденсаторов делителя.

Индуктивность реактора регулируется изменением воздушного зазора в магнитопроводе и с помощью отводов обмотки. В ТН с помощью отводов обмотки регулируется коэффициент трансформации.
Сравнение стоимости емкостного делителя и каскадных ТН показывает, что делители целесообразно применять при напряжениях выше 110 кВ. При напряжениях 400 кВ и выше стоимость емкостного делителя примерно в 2 раза ниже стоимости каскадного ТН. При напряжении ниже 110 кВ использование делителя не дает ощутимого экономического эффекта.
Наличие конденсаторов делителя и нелинейных индуктивностей создает возможность феррорезонансных явлений не только на основной, но и на низших частотах (субгармониках) .
В результате таких явлений могут возникать перенапряжения, опасные для изоляции, а также ложные срабатывания защиты. Возможно даже повреждение присоединяемых приборов. В настоящее время разработано много схем, эффективно ограничивающих эти перенапряжения.
Работа делителя зависит также от изменения частоты измеряемого напряжения, так как при этом возможны нарушения условия резонанса между реактором и конденсаторами.

23.4. ВЫБОР ТРАНСФОРМАТОРОВ НАПРЯЖЕНИЯ

Номинальное напряжение первичной обмотки ТН должно соответствовать номинальному напряжению сети, в которую он включается. Если ТН включается между фазой и землей — то номинальному фазному напряжению.
Номинальное вторичное напряжение ТН должно соответствовать номинальному напряжению нагрузки.
Нагрузка должна быть равномерно распределена по фазам ТН. Суммарная нагрузка на фазу ТН должна быть меньше допустимой при заданных классе точности и коэффициенте мощности.
Сечение проводников, соединяющих ТН с нагрузкой, должно быть таким, чтобы падение напряжения на них составляло доли процента номинального вторичного напряжения.