Зміст статті

2. ВЫКЛЮЧАТЕЛИ ВЫСОКОГО НАПРЯЖЕНИЯ

2.1. Общие сведения

Выключатель - это коммутационный аппарат, предназначенный для включения и отключения тока.
Выключатель является основным аппаратом в электрических установках и служит  для отключения и включения в цепи в любых режимах: длительная нагрузка, перегрузка, короткое замыкание, холостой ход, несинхронная работа. Наиболее тяжелой и ответственной операцией является отключение токов КЗ и включение на существующее короткое замыкание. К выключателям высокого напряжения предъявляют следующие требования:
1) Надежное отключение любых токов (от десятков ампер до номинального тока отключения);
2) быстрота действия, т. е. наименьшее время отключения;
3) пригодность для быстродействующего автоматического повторного включения, т.е. быстрое включение выключателя сразу же после отключения;
4) возможность пофазного (пополюсного) управления для выключателей 110 кВ и выше;
5) легкость ревизии и осмотра контактов;
6) взрыво- и пожаробезопасность;
7) удобство транспортировки и эксплуатации.
Выключатели высокого напряжения должны длительно выдерживать номинальный ток -Iном и номинальное напряжение Uном.           
В соответствии с ГОСТ 687—78Е, выключатели характеризуются следующими параметрами:                                      
1. Номинальный ток отключения Iотк.ном - наибольший ток КЗ (действующее значение), который выключатель способен отключите при напряжении, равном наибольшему рабочему напряжению при заданных условиях восстанавливающегося напряжения и заданном цикле операций. Ток КЗ состоит из периодическое и апериодической составляющих. Номинальный ток отключения определяется действующим значением периодической составляющей в момент расхождения контактов.                                        
2. Допустимое относительное содержание апериодической составляющей тока в токе отключения βном, которое определяется по кривой рис. 5:                     

Нормированное значение βном определяется для момента расхождения контактов                                                     

Если τ > 0,09 с, то принимают βном =0.
3. Цикл операций - выполняемая выключателем последовательность коммутационных операций с заданными интервалами между ними.
В эксплуатации выключатель может неоднократно включаться на существующее КЗ с последующим отключением, поэтому ГОСТ 687- 78Е предусматривает для выключателей определенный цикл операций.
Если выключатели предназначены для автоматического повторного включения (АПВ), то должны быть обеспечены циклы:   О – 180 с – ВО – 180 с – ВО
О – tбт – ВО – 180 с - ВО
Выключатели с Uном < 220 кВ должны также выполнять цикл:  О – tбт – ВО – 20 с - ВО
Выключатели без АПВ должны выдерживать цикл: О - 180 с - ВО - 180 с - ВО,
где О — операция отключения;
ВО - операция включения и немедленного отключения;
20с и 180 с — промежутки времени в секундах;
tбт - гарантируемая для выключателей минимальная бестоковая пауза при АПВ (время от погасания дуги  до появления тока при последующем включении).
Для выключателей с АПВ tбт должно быть в пределах 0,3—1,2 с, для выключателей с БАПВ — 0,3 с.

Нормированное содержание апериодической составляющей
Рис. 5. Нормированное содержание апериодической составляющей

4. Стойкость при сквозных токах, характеризующаяся токами термической стойкости Iтер и электродинамической стойкости  Iдин  (действующее значение), iдин - наибольший пик (амплитудное значение); эти токи выключатель выдерживает во включенном положении без повреждений, препятствующих дальнейшей работе.
Завод-изготовитель должен обеспечить для электрооборудования соотношение
iдин = 2,55*Iотк.ном, А

5. Номинальный ток включения - ток КЗ, который выключатель с соответствующим приводом способен включить без приваривания контактов и других повреждений, при Uном и заданном цикле. В каталогах приводится действующее значение этого тока Iвкл..ном и его амплитудное значение i вкл,ном.
Выключатели конструируются таким образом, что соблюдаются условия:

6. Собственное время отключения tс.в - интервал времени от момента подачи команды на отключение до момента прекращения соприкосновения дугогасительных контактов.
Время отключения tотк.в интервал времени от подачи команды на отключение до момента погасания дуги во всех полюсах.
Время включения tвкл.в — интервал времени от момента подачи команды на включение до возникновения тока в цепи.    
7. Параметры    восстанавливающегося    напряжения - в соответствии с нормированными характеристиками собственного переходного восстанавливающегося напряжения (ПВН).
8. Выключатели, не предназначенные для АПВ, должны допускать не менее пяти операций ВО при токах КЗ (0,6 – 1,0)*Iотк.ном без осмотра дугогасительного устройства. Выключатели, предназначенные для АПВ, должны допускать в тех же условиях от 6 до 10 операций ВО в зависимости от Iотк.ном , (ГОСТ 687 - 78Е, табл. 4). В этом же ГОСТ-е приведены также другие требования к конструкции включателей и методы их испытаний.
Основными конструктивными частями выключателей являются: контактная система с дугогасительным устройством, токоведущие части, корпус, изоляционная конструкция и приводной механизм.
По конструктивным особенностям и способу гашения дуги различают следующие типы выключателей: масляные баковые (масляные многообъемные), маломасляные (масляные малообъемные), воздушные, элегазовые, электромагнитные, автогазовые, вакуумные выключатели. К особой группе относятся выключатели нагрузки для внутренней, наружной установки и для комплектных распределительных устройств.

2.2. Масляные баковые выключатели

В масляных баковых выключателях масло служит для гашения дуги и изоляции токоведущих частей. При напряжении до 10 кВ (в некоторых типах выключателей до 35 кВ) выключатель имеет один бак, в котором находятся контакты всех трех фаз, при большем напряжении для каждой фразы предусматривается свой бак. В установках 6 – 10 кВ применяли масляные выключатели ВМБ-10, ВМЭ-6,  ВМЭ-10, ВС-10, им на смену пришли выключатели маломасляные и элегазовые.
Баковые масляные выключатели использовались в наружных установках напряжением 35 кВ и выше. Они отличались простотой конструкции, что определило их широкое применение и в настоящее время. В отличие от простейшего выключателя они имеют специальные устройства - гасительные камеры.
По принципу действия дугогасительные устройства можно разделить на три группы:
1) с автодутьем, в которых высокое давление и большая скорость движения газа в зоне дуги создаются за счет выделяющейся в дуге энергии;
2) с принудительным масляным дутьем, у которых к месту разрыва масло нагнетается с помощью специальных гидравлических механизмов;
3) с магнитным гашением в масле, в которых дуга под действием магнитного поля перемещается в узкие каналы и щели.
Наиболее эффективным и простым являются дугогасительные устройства с автодутьем. Следует отметить, что устройства с автодутьем работают тем эффективнее, чем больше ток в дуге. При отключении малых токов давление газов может оказаться незначительным, вследствие чего дутье будет неэнергичным, что приведет к затягиванию гашения дуги. По этой причине некоторые гасительные устройства с автодутьем дополнены принудительным масляным дутьем, которое обеспечивает гашение малых токов.
Чем выше напряжение, тем больше необходимо разрывов. Для равномерного распределения напряжения между основными разрывами параллельно им включается шунтирующее сопротивление. После гашения дуги на основных разрывах ток, проходящий через шунтирующее сопротивление, гасится на вспомогательных разрывах, обычно вне камеры. В дугогасительных устройствах с помощью изоляционных пластин и выхлопных отверстий создаются рабочие каналы, по которым происходит движение масла и газов (дутье). В зависимости от расположения каналов различают камеры с поперечным, продольным и встречно-поперечным дутьем.
Выключатель работает по двухступенчатому циклу: сначала размыкаются контакты дугогасительных камер, происходит гашение дуг и прерывается
цепь основного тока, затем в открытом разрыве контактов траверсы и контактов дугогасительных камер прерывается ток, протекающий через шунты. Траверса приводится в движение изолирующей тягой, связанной с приводным механизмом. На днище бака установлено льдоулавливающее устройство, предотвращающее всплытие замерзшего конденсата. Для подогрева масла при низких температурах к днищу крепится устройство электроподогрева, которое включается при температурах воздуха ниже – 150С. Это необходимо чтобы не снижалась скорость перемещения подвижных частей выключателя при  увеличении вязкости масла. Например, в выключателе У-220 на три полюса необходимо 27000 кг масла.
Основные преимущества баковых выключателей:

  1. простота конструкции,
  2. высокая отключающая способность,
  3. пригодность для наружной установки,
  4. возможность установки встроенных трансформаторов тока.

Недостатки баковых выключателей:

  1. взрыво- и пожароопасность;
  2. необходимость периодического контроля за состоянием и уровнем масла в баке и на вводах;
  3. большой объем масла, что обусловливает большую затрату времени на его замену,
  4. необходимость больших запасов масла;
  5. непригодность для установки внутри помещений;
  6. непригодность для выполнения быстродействующего АПВ;
  7. большая затрата металла, большая масса, неудобство перевозки, монтажа и наладки.

2.3. Маломасляные выключатели

Маломасляные выключатели (горшковые) получили широкое распространение в закрытых (ЗРУ) и открытых (ОРУ) распределительных устройствах всех напряжений.
Масло в этих выключателях в основном служит дугогасящей средой и только частично изоляцией между разомкнутыми контактами. Изоляция токоведущих частей друг от друга и от заземленных конструкций осуществляется фарфором или другими твердыми изолирующими материалами. Контакты выключателей для внутренней установки находятся в стальном бачке (горшке), отсюда сохранилось название выключателей «горшковые». Маломасляные выключатели напряжением 35 кВ и выше имеют фарфоровый корпус. Самое широкое применение имеют выключатели 6—10 кВ подвесного типа (рис. 6, а, б). В этих выключателях корпус крепится на фарфоровых изоляторах к общей раме для всех трех полюсов. В каждом полюсе предусмотрен один разрыв контактов и дугогасительная камера.
По типу, показанному на рис. 6, а, изготовляют выключатели ВМГ-10 (выключатель масляный горшковый) и ВПМ-10, а ранее изготовились выключатели ВМГ-133.
По конструктивной схеме, приведенной на рис. 6,б, изготовляются выключатели серии ВМП (выключатель маломасляный подвесной). При больших номинальных токах обойтись одной парой контактов (которые выполняют роль рабочих и дугогасительных) трудно, поэтому предусматривают рабочие контакты снаружи выключателя, а дугогасительные внутри металлического бачка (рис. 6, в). При больших отключаемых токах на каждый полюс имеются два дугогасительных разрыва (рис. 6, г). По такой схеме выполняются выключатели серий МГГ и МГ на напряжение до 20 кВ включительно. Массивные внешние рабочие контакты 4 позволяют рассчитать выключатель на большие номинальные токи (до 12000 А).

Конструктивные схемы маломасляных выключателей
Рис. 6. Конструктивные схемы маломасляных выключателей:
1-подвижный контакт; 2 - дугогасительная камера; 3 - неподвижный контакт;
4 - рабочие контакты

Специально для КРУ выдвижного исполнения разработаны и изготовляются колонковые маломасляные выключатели серии ВК по схеме рис. 6, д. Для установок 35 кВ и выше корпус колонковых выключателей фарфовый, заполненный маслом (рис. 6,е). В выключателях 35, 110 кВ предусмотрен один разрыв на фазу, при больших напряжениях - два и более разрывов.
Выключатели серии ВМП широко применяются в закрытых и комплектных распределительных устройствах 6 - 10 кВ. Выключатели для КРУ имеют встроенный пружинный или электромагнитный привод (типы ВМПП и ВМПЭ), Выключатели этих серий рассчитаны на номинальные токи 630 - 3150 А и токи отключения 20 и 31,5 кА.
Внутреннее устройство полюса для выключателей всей серии одинаково. Количество масла в выключателях на токи (630 – 1600)А 5,5 кг, в выключателях на 3150 А  8 кг.
Конструкция маломасляных выключателей 35 кВ и выше продолжает совершенствоваться с целью увеличения номинальных токов и отключающей способности. В мировой практике маломасляные выключатели изготовляются на напряжения до 420 кВ,
Достоинствами маломасляных выключателей являются небольшое количество масла, относительно малая масса, более удобный, чем у баковых выключателей, доступ к дугогасительным контактам, возможность создания серии выключателей на разное напряжение с применением унифицированных узлов.
Недостатки маломасляных выключателей: взрыво- и пожароопасность, хотя и значительно меньшая, чем у баковых выключателей; невозможность осуществления быстродействующего АПВ; необходимость периодического контроля, доливки, относительно частой замены масла в дугогасительных бачках; трудность установки встроенных трансформаторов тока;
относительно малая отключающая способность.
Область применения маломасляных выключателей — закрытые распределительные устройства электростанций и подстанций 6, 10, 20, 35 и 110 кВ, комплектные распределительные устройства 6, 10 и 35 кВ и открытые распределительные устройства 35, 110 и 220 кВ.

2.4. Воздушные выключатели

В воздушных выключателях гашение дуги происходит сжатым воздухом, а изоляция токоведущих частей и дугогасительного устройства осуществляется фарфором или другими твердыми изолирующими материалами. Конструктивные схемы воздушных выключателей различны и зависят от их номинального напряжения, способа создания изоляционного промежутка между контактами в отключенном положении, способа подачи сжатого воздуха в дугогасительные устройства.
В выключателях на большие номинальные токи (рис. 7, а, б) имеются главный и дугогасительный контуры, как и в маломасляных выключателях МГ и ВГМ.
Конструктивные схемы воздушных выключателей

Рис. 7. Конструктивные схемы воздушных выключателей

Основная часть тока во включенном положении выключателя проходит по главным контактам 4, расположенным открыто. При отключении выключателя главные контакты размыкаются первыми, после чего весь ток проходит по дугогасительным контактам, заключенным в камере 2. К моменту размыкания этих контактов в камеру подается сжатый  воздух из резервуара 1, создается мощное дутье, гасящее дугу. Дутье может быть продольным или поперечным. Необходимый изоляционный промежуток между контактами в отключенном положении создается в дугогасительной камере путем разведения контактов  на достаточное расстояние или специальным отделителем 5,  расположенным открыто. После отключения отделителя прекращается подача сжатого воздуха в камеры и дугогасительные контакты замыкаются. Выключатели, выполненные по такой конструктивной схеме, изготовляются для внутренней установки на напряжение 15 и 20 кВ и ток до 20000 А (серия ВВГ), а также на 35 кВ (ВВЭ-35-20/1600УЗ).
В выключателях для открытой установки дугогасительная камера расположена внутри фарфорового изолятора, причем на напряжение 35 кВ  достаточно иметь один разрыв на фазу (рис. 7, в), на 110 кВ - два разрыва на фазу (рис. 7, г). Различие между этими конструкциями состоит в том, что в выключателе на 35 кВ изоляционный промежуток создается в дугогасительной камере 2, а в выключателях напряжением 110 кВ и выше после гашения дуги размыкаются контакты отделителя 5 и камера отделителя остается заполненной сжатым воздухом на все время отключенного положения. При этом в дугогасительную камеру сжатый воздух не подается и контакты в ней замыкаются. По конструктивной схеме рис. 7,г созданы выключатели серии ВВ на напряжение до 500 кВ. Чем выше номинальное напряжение и чем больше отключаемая мощность, тем больше разрывов необходимо иметь в дугогасительной камере и в отделителе (на 330 кВ - восемь; на 500 кВ - десять).
В рассмотренных конструкциях воздух подается в дугогасительные камеры из резервуара, расположенного около основания выключателя. Если контактную систему поместить в резервуар сжатого воздуха, изолированный от земли, то скорость гашения дуги значительно увеличится. Такой принцип заложен в основу серии выключателей ВВБ (рис. 7, д). В этих выключателях нет отделителя. При отключении выключателя дугогасительная камера 2, являющаяся одновременно резервуаром сжатого воздуха, сообщается с атмосферой через дутьевые клапаны, благодаря чему создается дутье, гасящее дугу. В отключенном положении контакты находятся в среде сжатого воздуха. По такой конструктивной схеме созданы выключатели до 750 кВ. Количество дугогасительных камер (модулей) зависит от напряжения:

  1. при напряжении 110 кВ - одна;
  2. при напряжении 220, 330 кВ - две;
  3. при напряжении 500 кВ - четыре;
  4. при напряжении 750 кВ - шесть (в серии ВВБК).

Для равномерного распределения напряжения по разрывам используют омические 3 и емкостные 6 делители напряжения.
Воздушные выключатели имеют следующие достоинства: взрыво- и пожаробезопасность, быстродействие и возможность осуществления быстродействующего АПВ, высокую отключающую способность, надежное отключение емкостных токов линий, малый износ дугогасительных контактов, легкий доступ к дугогасительным камерам, возможность создания серий из крупных узлов, пригодность для наружной и внутренней установки.
Недостатками воздушных выключателей являются: необходимость компрессорной установки, сложная конструкция ряда деталей и узлов, относительно высокая стоимость, трудность установки встроенных трансформаторов тока.

2.5. Электромагнитные выключатели

Электромагнитные выключатели для гашения дуги не требуют ни масла, ни сжатого воздуха, что является большим их преимуществом  перед другими типами выключателей. Выключатели этого типа выпускают на напряжение 6 - 10 кВ, номинальный ток до 3600 А и ток отключения до 40 кА.
достоинства электромагнитных выключателей: полная взрыво- и пожаробезопасность, малый износ дугогасительных контактов, пригодность для работы в условиях частых включений и отключений, относительно высокая отключающая способность.
Недостатки: сложность конструкции дугогасительной камеры с системой магнитного дутья, ограниченный верхний предел номинального напряжения (15—20 кВ), ограниченная пригодность для наружной установки.

2.6. Вакуумные выключатели

Электрическая прочность вакуумного промежутка во много раз больше, чем воздушного промежутка при атмосферном давлении. Это свойство используется в вакуумных дугогасительных камерах КДВ. Рабочие контакты имеют вид полых усеченных конусов с радиальными прорезями. Такая форма контактов при размыкании создает радиальное электродинамическое усилие, действующее на возникающую дугу и заставляющее перемещаться ей через зазоры на дугогасительные контакты.
На рис. 8, а показан общий вид вакуумного выключателя ВВК-35Б-20/1000У1, предназначенного для частых коммутаций в нормальных и аварийных режимах в электроустановках 35 кВ. Выключатель рассчитан на открытую установку. На общей раме крепятся с помощью фарфоровых изоляторов три полюса. В каждом полюсе (рис. 8,6) в фарфоровом изоляторе 3, армированном фланцами 2 и 6, заключена дугогасительная камера 5. Для надежной изоляции полюсы заливаются маслом, и в крышке 1 имеется маслоуказатель. Механизм привода полюса 8 тягами 7 и 4 связан с подвижным контактом. Гашение дуги осуществляется в вакуумной камере 5.


Вакуумный выключатель ВВК-35Б-20/1000У1

полюс выключателя

Рис. 8. Вакуумный    выключатель ВВК-35Б-20/1000У1:
а - общий вид: 1- полюс; 2 - привод; 3 - рама; 4 - механизм привода полюса; 5 - опорный изолятор; 6 - токоведущие шины;
б - полюс выключателя: 1 - крышка; 2, 6 - фланцы; 3 - фарфоровый изолятор; 4,7 - тяги; 5 - вакуумная камера; 8 - механизм привода

В установках на 110 кВ используют вакуумный выключатель ВВК-110Б-20/1СЮОУ1. В каждом полюсе в фарфоровой покрышке включены четыре последовательно включенные дугогасительные камеры.
Достаточно широкое применение получили вакуумные выключатели  нагрузки ВНВ, рассчитанные на отключение номинальных токов. Вакуумные выключатели в мировой практике применяются в установках 500 кВ включительно.
Достоинства вакуумных выключателей: простота конструкции; высокая степень надежности, высокая коммутационная износостойкость, малые размеры, пожаро- и взрывобезопасность, отсутствие шума при операциях; отсутствие загрязнения окружающей среды, малые эксплуатационные расходы.
Недостатки вакуумных выключателей: сравнительно небольшие номинальные токи и токи отключения, возможность коммутационных перенапряжений при отключении малых индуктивных токов.

7. Автогазовые выключатели

В автогазовых выключателях для гашения дуги используется газ, выделяющийся из твердого газогенерирующего материала дугогасительной камеры. В системах электроснабжения городов и промышленных предприятий достаточно широко распространены выключатели нагрузки ВН-16; ВН-17 на 6 - 10 кВ с простейшей дугогасительной камерой, имеющей вкладыши из органического стекла. Однако эти выключатели не мог включаться на ток КЗ, равный току динамической стойкости, и допускают сравнительно малое количество отключений номинального тока.
В настоящее время эти выключатели модернизированы в серию ВН-10. Они могут снабжаться предохранителями ПК-6 или ПК-10 для защиты от токов КЗ, автоматическим устройством для отключения при срабатывании предохранителя, приводом ПРА и заземляющими ножами.


Автогазовый выключатель УПС-35У1

Рис. 9. Автогазовый выключатель УПС-35У1: а - общий вид: 1 - сварная рама; 2 - опорный изолятор; 3 - металлическая труба; 4 - винипластовая генерирующая трубка; 5 - корпус с патрубком поперечного дутья; 6 - контактный нож; 7 - изолятор-толкатель;
б - патрон УПС-35У1  исполнения «патрон — плавкая вставка»: 1 — металлическая труба; 2 - втягивающая   пружина;   3 - гибкий трос: 4 - газогенерирующая трубка; 5 - стержень; 6 - плавкая вставка; 7 - дутьевой патрубок: 8 - контактная система; 9 - гибкая токоведущая часть;
10 - стопорный винт; 11 - стреловидный оконцеватель.

патрон УПС-35У1б)

 

Достоинства автогазовых выключателей: отсутствие масла; небольшая масса.  
Недостатки: быстрый износ твердого дугогасителя, относительно большой износ контактов или да разрушение (в выключателе УПС).

8. Элегазовые выключатели

Элегаз SF6 обладает высокими дугогасящими свойствами, которые используются в различных аппаратах высокого напряжения.  Выключатели нагрузки элегазовые во многом напоминают конструкцию отделителей. Однако для успешного отключения тока в них предусматриваются устройства для вращения дуги в элегазе. В подвижный и неподвижный контакты встроены постоянные магниты из феррита, которые создают магнитные поля, направленные встречно. При размыкании контактов образуется дуга, ток которой взаимодействует с радиальным магнитным полем, в результате чего создается сила F, перемещающая дугу по кольцевым электродам. Вращение дуги в элегазе способствует быстрому гашению. Чем больше отключаемый ток, тем больше скорость перемещения дуги, это защищает контакты от обгорания. Контактная система описанной конструкции помещается внутри фарфорового корпуса, заполненного элегазом и герметически закрытого. Давление внутри камеры 0,3 МПа. Подпитка при возможных утечках происходит из баллона со сжатым элегазом.
В Украине разработаны конструкции выключателей нагрузки с элегазом на 35, 110, 220 кВ. Выключатели 35 и 110 кВ имеют по одной камере на полюс, в выключателе 220 кВ - две камеры на полюс. Кроме того, разработаны конструкции выключателей на два и три направления. Такой аппарат заменяет два или три выключателя, что дает значительную экономию при установке их на подстанциях.
Элегазовые выключатели могут отключать не только ток нагрузки, но и ток КЗ. Такие выключатели имеют дугогасительные устройства с автопневматическим дутьем. При отключении возникает дуга  между неподвижными и подвижным контактами.
При отключении привод перемещает подвижную систему вниз, при этом элегаз сжимается в объеме между неподвижным поршнем и соплом. Как только контакты размыкаются, создается дутье через трубчатые контакты, а при дальнейшем ходе подвижной системы, когда трубчатые контакты выходят из сопла, создается сильный поток элегаза, который гасит дугу. Образующееся при гашении дуги небольшое количество продуктов разложения элегаза поглощается специальными фильтра ми (4 шт. на полюс). Удары при включении и отключении выключателя смягчаются буфером. Такой выключатель рассчитан на номинальный ток 1250 А, ток отключения 31,5 кА, собственное время отключения 0,06 с.
Так же как и в воздушных выключателях, возможен модульный принцип создания элегазовых выключателей на более высокие напряжения. Выключатели и другая аппаратура с элегазом имеют большие перспективы
Достоинства элегазовых выключателей; пожаро- и взрывобезопасность быстрота действия, высокая отключающая способность, малый износ. дугогасительных контактов, возможность создания серий с унифицированными узлами, пригодность для наружной и внутренней установки.
Недостатки: необходимость специальных устройств для наполнения, перекачки и очистки SF6, относительно высокая стоимость SF6, экологические проблемы эксплуатации.

2.9. Синхронизированные выключатели

Синхронизированным называется выключатель, контакты которого размыкаются в строго определенный момент времени с опережением момента перехода отключаемого тока через нуль. Гашение дуги в этом случае значительно облегчается, так как количество энергии, выделяющейся в дуге, намного уменьшается.
В синхронизированном выключателе необходимо очень точно подать импульс на размыкание контактов, за (1 – 2) мс до перехода тока  через  нуль  и создать очень большую скорость движения контактов, чтобы к моменту нулевого значения тока и погасания дуги расстояние между контактами было достаточным для обеспечения необходимой электрической прочности промежутка и исключения возможности повторного зажигания дуги. Полное время отключения синхронизированного выключателя не превышает одного периода. Точность подачи импульса на отключение решается синхронизирующим устройством, а большая скорость движения контактов - специальным приводом.
Синхронизирующие устройства могут работать на различных принципах, но все они достаточно сложны и требуют точнейших полупроводниковых приборов со стабильными характеристиками и другой новой техники. Функциональная схема синхронизированного выключателя показана на рис. 10.
схема синхронизированного выключателя
Рис. 10. Функциональная схема синхронизированного выключателя
Синхронизирующее устройство 1 после срабатывания релейной защиты 2 посылает импульс на отключение в блок 3. Отключающий пульс передается приводу 4, непосредственно связанному с подвижным контактом выключателя 5. Непосредственная связь привода с контакт обеспечивает быстрое расхождение контактов, но требует изоляции привода, так как он находится под высоким потенциалом.
В некоторых конструкциях быстрое расхождение контактов обеспечивается взрывом порохового патрона, применением индукционно-динамических приводов, сочетанием привода с вакуумными и воздушными выключателями.
Синхронизированные сверхбыстродействующие выключатели обеспечивают ряд преимуществ: повышение динамической устойчивости работы систем при КЗ, так как отключение обеспечивается до первого перехода тока через нуль; увеличение срока службы контактов выключателя, так как им не приходится отключать больших токов; большую отключающую способность.
Однако, пока создание синхронизированных выключателей связано со многими техническими трудностями.