Зміст статті

 

Глава  шестнадцатая ПРЕДОХРАНИТЕЛИ
16.1. ОБЩИЕ СВЕДЕНИЯ

Предохранители — это электрические аппараты, предназначенные для защиты электрических цепей от токовых перегрузок и токов КЗ. Основными элементами предохранителя являются плавкая вставка, включаемая последовательно с защищаемой цепью, и дугогасительное устройство.
К предохранителям предъявляются следующие требования.
1. Времятоковая характеристика предохранителя должна проходить ниже, но возможно ближе к времятоковой характеристике защищаемого объекта.
2. Время срабатывания предохранителя при КЗ должно быть минимально возможным, особенно при защите полупроводниковых приборов. Предохранители должны работать с токеограничением (§ 4.3).
3. При КЗ в защищаемой цепи предохранители должны обеспечивать селективность защиты.
4. Характеристики предохранителя должны быть стабильными, а технологический разброс их параметров не должен нарушать надежность защиты.
5. В связи с возросшей мощностью установок предохранители должны иметь высокую отключающую способность.
6. Конструкция предохранителя должна обеспечивать возможность быстрой и удобной замены плавкой вставки при ее перегорании.

16.2. НАГРЕВ ПЛАВКОЙ ВСТАВКИ ПРИ ДЛИТЕЛЬНОЙ НАГРУЗКЕ

Основной характеристикой предохранителя является времятоковая характеристика, представляющая собой зависимость времени плавления вставки от протекающего тока. Для совершенной защиты желательно, чтобы времятоковая характеристика предохранителя (кривая 1 на рис. 16.1) во всех точках шла немного ниже характеристики защищаемой цепи или объекта (кривая 2 на рис. 16.1). Однако реальная характеристика предохранителя (кривая 3) пересекает кривую 2. Поясним это. Если характеристика предохранителя соответствует кривой 1, то он будет перегорать из-за старения или при пуске двигателя. Цепь будет отключаться при отсутствии недопустимых перегрузок. Поэтому ток плавления вставки выбирается больше номинального тока нагрузки. При этом кривые 2 я 3 пересекаются. В области больших перегрузок (область Б) предохранитель защищает объект. В области А предохранитель объект не защищает.
При небольших перегрузках (1,5ч-2) нагрев предохранителя протекает медленно. Большая часть тепла отдается окружающей среде. Сложные условия теплоотдачи затрудняют расчет плавкой вставки.

В связи с тем, что время плавления вставки при пограничном токе велико (более 1 ч) и температура плавления ее материала составляет много сотен градусов Цельсия, все детали предохранителя нагреваются до высоких температур. Происходит тепловое старение плавкой вставки.
Для снижения температуры плавления вставки при ее изготовлении применяются легкоплавкие металлы и сплавы. Материалы плавких вставок и их свойства даны в табл. 16.1.
Таблица 16.1
Материалы плавких вставок

Примечание, в доп — допустимая температура плавкой вставки при длительном протекании тока; впч—температура плавления вставки; А' и А" — коэффициенты, определяющие время плавления при КЗ [см. (16.1) и (16.2)]. Время нагрева плавкой вставки от начальной температуры до полного ее разрушения определяется суммой коэффициентов Л'4-Л".
Наименьшую температуру плавления имеет свинец. Но удельное сопротивление свинца в 12 раз выше, чем у меди. Для того чтобы при прохождении данного тока вставка нагрелась до допустимой температуры (150 °С), ее сечение должно быть значительно больше, чем сечение вставки из меди.
При плавлении вставки пары металла ионизируются в возникающей дуге благодаря высокой температуре. Из-за большого объема вставки количество паров металла в дуге велико, что затрудняет ее гашение и уменьшает предельный ток, отключаемый предохранителем. Из-за этих особенностей вставок из легкоплавких металлов широкое распространение получили медные и серебряные плавкие вставки с металлургическим эффектом, который объясняется ниже. На тонкую медную проволоку (диаметром менее 0,001 м) наносится шарик из олова. При нагреве вставки сначала плавится олово, имеющее низкую температуру плавления (232°С). В месте контакта олова с проволокой начинается растворение меди и уменьшение ее сечения. Это вызывает увеличение сопротивления и повышение потерь в этой точке. Процесс длится до тех пор, пока медная проволока не расплавится в точке расположения оловянного шарика. Возникшая при этом дуга расплавляет проволоку на всей длине. Применение оловянного шарика снижает среднюю температуру плавления вставки до 280 °С.
Отношение /погр/Люм уменьшается до 1,2, что дает улучшение времятоковой характеристики.
Стабильность времятоковой характеристики в значительной степени зависит от окисления плавкой вставки. Свинец и цинк образуют на воздухе пленку оксида, которая предохраняет вставку от изменения сечения. Медная вставка при длительной работе и высокой температуре интенсивно окисляется. Пленка оксида при изменении температурного режима отслаивается, и сечение вставки постепенно уменьшается. В результате плавкая вставка перегорает при номинальном токе, если ее температура при токе, близком к пограничному, выбрана высокой. В табл. 16.1 приведены рекомендуемые допустимые температуры   вставок при номинальном токе. Температура медной вставки при токе, близком к номинальному, должна быть значительно ниже температуры плавления. Поэтому приходится завышать сечение вставки и тем самым увеличивать отношение /погр/Люм примерно до 1,8, что ухудшает защитные свойства предохранителя.
Серебряные плавкие вставки не подвержены тепловому старению, и для них отношение Люгр/Лгом определяется только нагревом.
У вставок из легкоплавких материалов эксплуатационная температура ближе к температуре плавления, что позволяет снизить отношение /ПогР//ном до 1,2—1,4.
В настоящее время в качестве материала плавкой вставки начали применять алюминий [16.2]. Пленка оксида на поверхности вставки защищает алюминий от коррозии и делает характеристику предохранителя стабильной. Большее удельное сопротивление материала компенсируется увеличением сечения вставки. Алюминий имеет температуру плавления ниже, чем у меди (658 против 1083 °С).
Времятоковые характеристики предохранителей со вставками постоянного сечения из легкоплавкого металла хорошо согласуются с характеристиками силовых трансформаторов и других подобных объектов. Это объясняется низкой температурой плавления, стойкостью против коррозии и малой теплопроводностью материала таких вставок.
Медная вставка из-за высокой теплопроводности, высокой температуры плавления и большого отношения/погр//ноч в области малых перегрузок не обеспечивает защиту объекта (область А, рис. 16.1).